NNPDF: Neural Networks, Monte Carlo techniques and Parton Distribution Functions

Alberto Guffanti

Albert-Ludwigs-Universität Freiburg

on behalf of the **NNPDF Collaboration**: R. D. Ball, L. Del Debbio (Edinburgh), S. Forte, J. Rojo(Milano), J. I. Latorre, F. Cerutti (Barcelona), M. Ubiali (Aachen), V. Bertone and AG (Freiburg)

HiX2010

3rd International Workshop on Nucleon Structure at Large Bjorken x

Jefferson Lab, Newport News, Virginia October 13 - 15, 2010

What are Parton Distribution Functions?

• Consider a process with one hadron in the initial state

According to the Factorization Theorem we can write the cross section as

$$d\sigma = \sum_{a} \int_{0}^{1} \frac{d\xi}{\xi} D_{a}(\xi, \mu^{2}) d\hat{\sigma}_{a}\left(\frac{x}{\xi}, \frac{\hat{s}}{\mu^{2}}, \alpha_{s}(\mu^{2})\right) + \mathcal{O}\left(\frac{1}{Q^{p}}\right)$$

What are Parton Distribution Functions?

- The absolute value of PDFs at a given x and Q² cannot be computed in QCD Perturbation Theory (Lattice? In principle yes, but ...)
- ... but the scale dependence is governed by DGLAP evolution equations

$$\frac{\partial}{\ln Q^2} q^{NS}(\xi, Q^2) = P^{NS}(\xi, \alpha_s) \otimes q^{NS}(\xi, Q^2)$$
$$\frac{\partial}{n Q^2} \begin{pmatrix} \Sigma \\ g \end{pmatrix} (\xi, Q^2) = \begin{pmatrix} P_{qq} & P_{qg} \\ P_{gq} & P_{gg} \end{pmatrix} (\xi, \alpha_s) \otimes \begin{pmatrix} \Sigma \\ g \end{pmatrix} (\xi, Q^2)$$

 ... and the splitting functions P can be computed in PT and are known up to NNLO

(LO - Dokshitzer; Gribov, Lipatov; Altarelli, Parisi; 1977) (NLO - Floratos, Ross, Sachrajda; Gonzalez-Arroyo, Lopez, Yndurain; Curci, Furmanski, Petronzio, 1981) (NNLO - Moch, Vermaseren, Vogt; 2004)

Problem

Faithful estimation of errors on PDFs

- Single quantity: 1σ error
- Multiple quantities: $1-\sigma$ contours
- Function: need an "error band" in the space of functions (*i.e.* the probability density *P*[*f*] in the space of functions *f*(*x*))

Expectation values are Functional integrals

$$\langle \mathcal{F}[f(x)] \rangle = \int \mathcal{D}f \mathcal{F}[f(x)] \mathcal{P}[f(x)]$$

Problem

Faithful estimation of errors on PDFs

- Single quantity: 1σ error
- Multiple quantities: $1-\sigma$ contours
- Function: need an "error band" in the space of functions (*i.e.* the probability density P[f] in the space of functions f(x))

Expectation values are Functional integrals

 $\langle \mathcal{F}[f(x)] \rangle = \int \mathcal{D}f \mathcal{F}[f(x)] \mathcal{P}[f(x)]$

Determine a function from a finite set of data points

• Introduce a simple functional form with enough free parameters

$$q(x, Q_0^2) = x^{\alpha}(1-x)^{\beta} P(x; \lambda_1, ..., \lambda_n).$$

• Fit parameters minimizing χ^2 .

Introduce a simple functional form with enough free parameters

$$q(x, Q_0^2) = x^{\alpha}(1-x)^{\beta} P(x; \lambda_1, ..., \lambda_n).$$

• Fit parameters minimizing χ^2 .

Open problems:

- Error propagation from data to parameters and from parameters to observables is not trivial.
- Theoretical bias due to the chosen parametrization is difficult to assess.

What is the meaning of a one- σ uncertainty?

 Standard Δχ² = 1 criterion is too restrictive to account for large discrepancies among experiments.

[Collins & Pumplin, 2001]

What is the meaning of a one- σ uncertainty?

 Standard Δχ² = 1 criterion is too restrictive to account for large discrepancies among experiments.

[Collins & Pumplin, 2001]

• Introduce a **TOLERANCE** criterion, i.e. take the envelope of uncertainties of experiments to determine the $\Delta \chi^2$ to use for the global fit (CTEQ).

What is the meaning of a one- σ uncertainty?

• Standard $\Delta \chi^2 = 1$ criterion is too restrictive to account for large discrepancies among experiments.

[Collins & Pumplin, 2001]

• Introduce a **TOLERANCE** criterion, i.e. take the envelope of uncertainties of experiments to determine the $\Delta \chi^2$ to use for the global fit (CTEQ).

• Make it **DYNAMICAL**, i.e. determine $\Delta \chi^2$ separately for each hessian eigenvector (MSTW).

What determines PDF uncertainties?

- Uncertainties in standard fits often increase when adding new data to the fit.
- Need of extending the parametrization in order to accomodate the new data

Smaller high-x gluon (and slightly smaller α_S) results in larger small-x gluon – now shown at NNLO.

Larger small-x uncertainty due to extrat free parameter.

PDF4LHCMSTW

A. Guffanti (Univ. Freiburg)

What determines PDF uncertainties? Parmetrization bias?

What determines PDF uncertainties? Parmetrization bias?

What determines PDF uncertainties? Parmetrization bias?

NNPDF Methodology

Main Ingredients

Monte Carlo determination of errors

- No need to rely on linear propagation of errors
- Possibility to test for the impact of non gaussianly distributed errors
- Possibility to test for non-gaussian behaviour in fitted PDFs $(1 \sigma \text{ vs. 68\% CL})$

Neural Networks

Provide an unbiased parametrization

• Stopping based on Cross Validation

• Ensures proper fitting avoiding overlearning

NNPDF Methodology

- Generate *N_{rep}* Monte-Carlo replicas of the experimental data (sampling of the probability density in the space of data)
- Fit a set of Parton Distribution Functions on each replica (sampling of the probability density in the space of PDFs)
- Expectation values for observables are Monte Carlo integrals

$$\langle \mathcal{F}[f_i(x, Q^2)]
angle = rac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} \mathcal{F}\Big(f_i^{(net)(k)}(x, Q^2)\Big)$$

... the same is true for errors, correlations, etc.

NNPDF Methodology

Monte Carlo replicas generation

Generate artificial data according to distribution

$$O_{i}^{(art)(k)} = (1 + r_{N}^{(k)} \sigma_{N}) \left[O_{i}^{(exp)} + \sum_{p=1}^{N_{sys}} r_{p}^{(k)} \sigma_{i,p} + r_{i,s}^{(k)} \sigma_{s}^{i} \right]$$

where r_i are univariate gaussian random numbers

 Validate Monte Carlo replicas against experimental data (statistical estimators, faithful representation of errors, convergence rate increasing N_{rep})

O(1000) replicas needed to reproduce correlations to percent accuracy

- Need a redundant parametrization to avoid parametrization bias.
- Need a way of **stopping the fit before overlearning** sets in to avoid fitting statistical noise.

... a suitable basis of functions

- We use Neural Networks as functions to represent PDFs at the starting scale
- We employ Multilayer Feed-Forward Neural Networks trained using a Genetic Algorithm
- Activation determined by weights and thresholds

$$\xi_i = g\left(\sum_j \omega_{ij}\xi_j - \theta_i\right), \qquad g(x) = \frac{1}{1 + e^{-\beta x}}$$

... a suitable basis of functions

- We use Neural Networks as functions to represent PDFs at the starting scale
- We employ Multilayer Feed-Forward Neural Networks trained using a Genetic Algorithm
- Activation determined by weights and thresholds

$$\xi_i = g\left(\sum_j \omega_{ij}\xi_j - \theta_i\right), \qquad g(x) = \frac{1}{1 + e^{-\beta x}}$$

Ex.: 1-2-1 NN: $\xi_{1}^{(3)}(\xi_{1}^{(1)}) = \frac{1}{1+e^{\theta_{1}^{(3)} - \frac{\omega_{11}^{(2)}}{1+e^{\theta_{12}^{(2)} - \xi_{1}^{(1)}\omega_{11}^{(1)}} - \frac{\omega_{12}^{(2)}}{1+e^{\theta_{22}^{(2)} - \xi_{1}^{(1)}\omega_{21}^{(1)}}}}$

... a suitable basis of functions

- We use Neural Networks as functions to represent PDFs at the starting scale
- We employ Multilayer Feed-Forward Neural Networks trained using a Genetic Algorithm
- Activation determined by weights and thresholds

$$\xi_i = g\left(\sum_j \omega_{ij}\xi_j - \theta_i\right), \qquad g(x) = \frac{1}{1 + e^{-\beta x}}$$

Ex.: 1-2-1 NN:

$$\xi_{1}^{(3)}(\xi_{1}^{(1)}) = \frac{1}{1 + e^{\theta_{1}^{(3)} - \frac{\omega_{11}^{(2)}}{1 + e^{\theta_{12}^{(2)} - \xi_{1}^{(1)}\omega_{11}^{(1)}} - \frac{\omega_{12}^{(2)}}{1 + e^{\theta_{22}^{(2)} - \xi_{1}^{(1)}\omega_{21}^{(1)}}}}$$

 They provide a parametrization which is redundant and robust against variations

A. Guffanti (Univ. Freiburg)

Stopping criterion

Stopping criterion based on Training-Validation separation

- Divide the data in two sets: Training and Validation
- Minimize the χ^2 of the data in the Training set
- Compute the χ^2 for the data in the Validation set
- When Validation χ^2 stops decreasing, **STOP** the fit

Stopping criterion

Stopping criterion based on Training-Validation separation

- Divide the data in two sets: Training and Validation
- Minimize the χ^2 of the data in the Training set
- Compute the χ^2 for the data in the Validation set
- When Validation χ^2 stops decreasing, **STOP** the fit

NNPDF 2.0 Dataset

3415 data points (for comparison MSTW08 includes 2699 data points)

Deep Inelastic Scattering		
F_2^d/F_2^p	NMC-pd	
F_2^p	NMC	
-	SLAC	
	BCDMS	
F_2^d	SLAC	
_	BCDMS	
σ_{NC}^{\pm}	HERA-I comb.	
, NO	ZEUS (HERA-II)	
σ_{CC}^{\pm}	HERA-I comb.	
	ZEUS (HERA-II)	
F_L	H1	
$\sigma_{\nu}, \sigma_{\bar{\nu}}$	CHORUS	
dimuon prod.	NuTeV	
Drell-Yan & Vector Boson prod.		
$d\sigma^{\rm DY}/dM^2 dy$	E605	
$d\sigma^{\rm DY}/dM^2 dx_F$	E866	
W asymm.	CDF	
Z rap. distr.	D0/CDF	
Inclusive jet prod.		
Incl. $\sigma^{(jet)}$	CDF (k _T) - Run II	
Incl. $\sigma^{(jet)}$	D0 (cone) - Run II	

- The fit is carried at NLO QCD, in the Zero-Mass Variable Flavour Number Scheme
- Fast DGLAP evolution based on higher-order interpolating polynomials
- Improved treatment of normalization errors (*t*₀ method)
 - For details see [R. D. Ball et al., arXiv:0912.2276]
- Improvements in training/stopping
 - Target Weighted Training
 - Improved stopping for avoiding under-/over-learning
- All details given in [R. D. Ball et al., arXiv:1002.4407]

NNPDF 2.0

FastKernel

- NLO computation of hadronic observables too slow for parton global fits.
- MSTW08 and CTEQ include Drell-Yan NLO as (local) K factors rescaling the LO cross section
- K-factor depends on PDFs and it is not always a good approximation.

- NNPDF2.0 includes full NLO calculation of hadronic observables.
- Use available fastNLO interface for jet inclusive cross-sections.[hep-ph/0609285]
- * Built up our own **FastKernel** computation of DY observables.

$$\int_{x_{0,1}}^{1} dx_{1} \int_{x_{0,2}}^{1} dx_{2} f_{a}(x_{1}) f_{b}(x_{2}) C^{ab}(x_{1}, x_{2}) \rightarrow \sum_{\alpha, \beta=1}^{N_{x}} f_{a}(x_{1,\alpha}) f_{b}(x_{2,\beta}) \int_{x_{0,1}}^{1} dx_{1} \int_{x_{0,2}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{1}, x_{2}) C^{ab}(x_{1}, x_{2}) - \sum_{\alpha, \beta=1}^{N_{x}} f_{a}(x_{1,\alpha}) f_{b}(x_{2,\beta}) \int_{x_{0,1}}^{1} dx_{1} \int_{x_{0,2}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{1}, x_{2}) C^{ab}(x_{1}, x_{2}) - \sum_{\alpha, \beta=1}^{N_{x}} f_{a}(x_{1,\alpha}) f_{b}(x_{2,\beta}) \int_{x_{0,1}}^{1} dx_{1} \int_{x_{0,2}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{1}, x_{2}) C^{ab}(x_{1}, x_{2}) - \sum_{\alpha, \beta=1}^{N_{x}} f_{a}(x_{1,\alpha}) f_{b}(x_{2,\beta}) \int_{x_{0,1}}^{1} dx_{1} \int_{x_{0,2}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{1}, x_{2}) C^{ab}(x_{1}, x_{2}) + \sum_{\alpha, \beta=1}^{N_{x}} f_{a}(x_{1,\alpha}) f_{b}(x_{2,\beta}) \int_{x_{0,1}}^{1} dx_{1} \int_{x_{0,2}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{1}, x_{2}) C^{ab}(x_{1}, x_{2}) dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{1}, x_{2}) + \sum_{\alpha, \beta=1}^{N_{x}} f_{a}(x_{1,\alpha}) f_{b}(x_{2,\beta}) \int_{x_{0,1}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{1}, x_{2}) dx_$$

- DGLAP evol. and double convolution improved
 - Use high-orders polynomial interpolation
 - Precompute all Green Functions

A truly NLO analysis

Parton Distributions	S Combination
----------------------	---------------

NN architechture

Singlet $(\Sigma(x))$	\implies	2-5-3-1 (37 pars)
Gluon $(g(x))$	\implies	2-5-3-1 (37 pars)
Total valence $(V(x) \equiv u_V(x) + d_V(x))$	\implies	2-5-3-1 (37 pars)
Non-singlet triplet $(T_3(x))$	\implies	2-5-3-1 (37 pars)
Sea asymmetry $(\Delta_S(x) \equiv \overline{d}(x) - \overline{u}(x))$	\implies	2-5-3-1 (37 pars)
Total Strangeness $(s^+(x) \equiv (s(x) + \bar{s}(x))/2)$	\implies	2-5-3-1 (37 pars)
Strange valence $(s^{-}(x) \equiv (s(x) - \bar{s}(x))/2)$	\implies	2-5-3-1 (37 pars)

 $\begin{array}{c} \textbf{259 parameters} \\ \textbf{Standard fits have} \sim \textbf{25 parameters in total} \end{array}$

No change in the parametrization from NNPDF1.2 ... despite substantial enlargement of the dataset

NNPDF 2.0

General features of the fit

Construction of the constr

orest orest orest of a start

NNPDF

NNPDF 2.0

Partons - Comparison to other global fits

A. Guffanti (Univ. Freiburg)

NNPDF

NNPDF2.0

Results - Partons - A couple of upshots

 Reduction of uncertainties with respect to older NNPDF sets due to inclusion of new data

NNPDF2.0

Results - Partons - A couple of upshots

 Reduction of uncertainties with respect to older NNPDF sets due to inclusion of new data

• Uncertainties on PDFs competitive with results from other groups ...

NNPDF2.0

Results - Partons - A couple of upshots

 Reduction of uncertainties with respect to older NNPDF sets due to inclusion of new data

• Uncertainties on PDFs competitive with results from other groups ...

 ... but still retain unbiasedness in regions where there are little or no experimental constraints

PDF Uncertainties and Correlations

A practitioner's guide to NNPDF predictions

Central Value

$$\langle \mathcal{F}
angle = rac{1}{N_{\text{set}}} \sum_{k=1}^{N_{\text{set}}} \mathcal{F}[q^{(k)}]$$

$\rho \equiv \cos[\varphi(\mathcal{F}, \mathcal{G})] = \frac{\langle \mathcal{F} \mathcal{G} \rangle_{\text{rep}} - \langle \mathcal{F} \rangle_{\text{rep}} \langle \mathcal{G} \rangle_{\text{rep}}}{\sqrt{\langle \mathcal{F}^2 \rangle_{\text{rep}} - \langle \mathcal{F} \rangle_{\text{rep}}^2} \sqrt{\langle \mathcal{G}^2 \rangle_{\text{rep}} - \langle \mathcal{G} \rangle_{\text{rep}}^2}}$

PDF induced correlations

Ex.: Top-quark studies within the NNPDF framework

[J. Rojo and AG, arXiv:1008.4671]

It is easy to compute correlations among PDFs and observables

• ... or pairs of observbles

Assessing the impact of new data on PDF fits

- Inspired by Giele and Keller [hep-ph/9803393]
- The *N*_{rep} replicas of a NNPDF fit give the probability density in the space of PDFs
- Expectation values for observables are Monte Carlo integrals

$$\langle \mathcal{F}[f_i(x, Q^2)] \rangle = rac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} \mathcal{F}\Big(f_i^{(net)(k)}(x, Q^2)\Big)$$

(... the same is true for errors, correlations, etc.)

• We can **assess the impact** of including **new data** in the fit updating the probability density distribution.

Assessing the impact of new data on PDF fits

According to Bayes Theorem we have

 $\mathcal{P}_{\text{new}}(\{f\}) = \mathcal{N}_{\chi} \mathcal{P}(\chi^2 | \{f\}) \mathcal{P}_{\text{init}}(\{f\}), \quad \mathcal{P}(\chi^2 | \{f\}) = [\chi^2(y, \{f\})]^{\frac{n_{dat}}{2} - 1} e^{-\frac{\chi^2(y, \{f\})}{2}}$

Monte Carlo integrals are now weighted sums

$$\langle \mathcal{F}[f_i(x, Q^2)] \rangle = \sum_{k=1}^{N_{rep}} w_k \mathcal{F}\left(f_i^{(net)(k)}(x, Q^2)\right)$$

where the weights are

$$w_{k} = \frac{\left[\chi^{2}(y, f_{k})\right]^{\frac{n_{dat}}{2} - 1} e^{-\frac{\chi^{2}(y, f_{k})}{2}}}{\sum_{i=1}^{N_{rep}} \left[\chi^{2}(y, f_{i})\right]^{\frac{n_{dat}}{2} - 1} e^{-\frac{\chi^{2}(y, f_{i})}{2}}}$$

Proof-of-concept: Inclusive Jet data, reweighting vs. refitting

- Use DIS+DY-fit as prior probability distribution
- Add Tevatron Inclusive Jet data through refitting and through reweighting
- Reweighting and refitting yield statistically equivalent results

Reweighting real data: W lepton asymmetry

- In the NNPDF2.0 fit we only included CDF W asymmetry data
- We evaluated W electron asymmetry with NNPDF20 1000 replicas set using DYNNLO

[Catani et al., arXiv:0903.2120].

- .. and included D0 W electron asymmetry data points through reweighting.
- Main impact on reduction of middle-*x* Valence uncertainty.
- No need of refitting

3554 data points

Deep Inelastic Scattering		
F_2^d/F_2^p	/F ^p ₂ NMC-pd	
F_2^p	NMC, SLAC, BCDMS	
F_2^d	SLAC, BCDMS	
σ_{NC}^{\pm}	HERA-I, ZEUS (HERA-II)	
σ_{CC}^{\pm}	HERA-I, ZEUS (HERA-II)	
F _L	H1	
$\sigma_{\nu}, \sigma_{\bar{\nu}}$	CHORUS	
dimuon prod.	NuTeV	
F_2^c	ZEUS (99,03,08,09)	
F_2^c	H1 (01,09,10)	

Drell-Yan & Vector Boson prod.		
$d\sigma^{\rm DY}/dM^2 dy$	E605	
$d\sigma^{\rm DY}/dM^2 dx_F$	E866	
W asymm.	CDF	
Z rap. distr.	D0/CDF	

Inclusive jet prod.		
Incl. $\sigma^{(jet)}$	$CDF(k_T) - Run II$	
Incl. $\sigma^{(jet)}$	D0 (cone) - Run II	

NNPDF 2.1

Heavy Flavour treatment - FONLL

 We adopt the FONLL-A General Mass-Variable Flavour Number Scheme
 M. Carciari, M. Greco and P. Nason

(S. Forte, P. Nason E. Laenen and J. Rojo, (2010))

Preliminary results for partons

- Small- and medium-x gluon and Singlet are most sensitive, Non-Singlet combinations mostly unaffected
- Effect of improved heavy flavour treatment is within one-σ, both on PDFs and LHC Standard Candles
- Fixed-(3- and 4-)Flavour Number Scheme PDFs will also be released

⁽M. Cacciari, M. Greco and P. Nason, (1998))

Conclusions

- The NNPDF methodology based on using Monte Carlo techniques and Neural Networks is well suited to address problems of standard fits.
- NNPDF2.0 is the first global NNPDF fit
 - Exact inclusion of NLO corrections
 - No sign of strong tension among different datasets
- NNPDF sets are **available** within the **LHAPDF** interface.
- Reweighting technique allows to study impact of new data without refitting
- Next steps:
 - Improved treatment of Heavy Flavour contributions (FONLL)
 - Inclusion of higher order contributions (NNLO QCD/EW effects)
 - Study the impact of theoretical uncertainties (α_S, quark masses ...)
 - Inclusion of resummation (small-/large-x) effects

